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[11 During the operational phase of the ICARTT field experiment in 2004, the regional air
quality model STEM showed a strong positive surface bias and a negative upper
troposphere bias (compared to observed DC-8 and WP-3 observations) with respect to
ozone. After updating emissions from NEI 1999 to NEI 2001 (with a 2004 large point
sources inventory update), and modifying boundary conditions, low-level model bias
decreases from 11.21 to 1.45 ppbv for the NASA DC-8 observations and from 8.26 to
—0.34 for the NOAA WP-3. Improvements in boundary conditions provided by global
models decrease the upper troposphere negative ozone bias, while accounting for biomass
burning emissions improved model performance for CO. The covariances of ozone bias
were highly correlated to NO,, NOy, and HNOj3 biases. Interpolation of bias information
through kriging showed that decreasing emissions in SE United States would reduce
regional ozone model bias and improve model correlation coefficients. The spatial
distribution of forecast errors was analyzed using kriging, which identified distinct
features, which when compared to errors in postanalysis simulations, helped document
improvements. Changes in dry deposition to crops were shown to reduce substantially
high bias in the forecasts in the Midwest, while updated emissions were shown to account
for decreases in bias in the eastern United States. Observed and modeled ozone production
efficiencies for the DC-8 were calculated and shown to be very similar (7.8) suggesting
that recurring ozone bias is due to overestimation of NO, emissions. Sensitivity studies

showed that ozone formation in the United States is most sensitive to NO, emissions,
followed by VOCs and CO. PAN as a reservoir of NOy can contribute to a significant
amount of surface ozone through thermal decomposition.
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1. Introduction

[2] Air pollution models have been used to predict air
quality during numerous field campaigns [Bates et al.,
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1998; Jacob et al., 2003; Menut et al., 2000; Ramana et
al., 2004; Vautard et al., 2003], with the objective to both
place air pollution in a geographical context for experimen-
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Flight tracks and altitude range for [CARTT. Red indicates 0—1 km, yellow indicates 1 —4 km,

green indicates 4—8 km, and blue indicates 8—12 km. (left) DC-8 and (right) WP-3.

tal design and, as the data is collected, evaluate our current
understanding of atmospheric processes [Kiley et al., 2003]
and anthropogenic and biogenic emissions [Carmichael et
al., 2003]. During the summer of 2004, the International
Consortium for Atmospheric Research on Transport and
Transformation (ICARTT) field experiment was performed
(http://esrl.noaa.gov/csd/ICARTT), which included a NASA
experiment called INTEX-A (Intercontinental Chemical
Transport Experiment—A), and a NOAA experiment called
NEAQS/ITCT-2k4 (New England Air Quality Study—
Intercontinental Transport and Chemical Transformation,
2004). During this period NASA DC-8 and NOAA WP-3
aircraft each performed 18 research flights over the conti-
nental United States, with a special focus on the northeast-
ern United States. Figure 1 shows the flight tracks of the
DC-8 and WP-3 during the mission, and the altitude at
which the aircraft flew. The WP-3 aircraft flew at lower
altitudes, mostly over the NE United states. More details
about the aircraft measurements and main findings are given
by Singh et al. [2006]. During the field experiment oper-
ations forecasts using the University of lowa STEM model
[Carmichael et al., 1991; Tang et al., 2003, 2004] were used
(along with other models) in support for flight planning.
Analysis of the forecasts has shown a persistent positive
bias (modeled-observed) for ozone [McKeen et al., 2006] in
comparison to surface sites in the AIRMAP network (http://
airmap.unh.edu/), and in comparison to the aircraft platform
observations. The objective of this paper is to show that
model performance in relation to ozone and its precursors
was improved through systematic analysis of model predic-
tion with the observed data to evaluate where model error
persists, and how ozone model error is related to model
error of other species. The paper also demonstrates how

geospatial interpolation through kriging can be used to
provide geographical contextualization to model error,
which in turn can be used to improve model performance.

2. Methodology

[3] Figure 2 shows the layout of this study, in which
systematic data analysis is used to improve model perfor-
mance by modifying boundary conditions and emissions
inventories through an iterative process which included
geospatial interpolation of model bias through kriging to
provide qualitative support for regional modification of
emissions. After selecting the best model run sensitivity
studies are carried out to evaluate the contribution of
different ozone precursors to ozone formation.

[4] In this study we used the STEM-2K3 model
[Carmichael et al., 1991]. The model features the lumped
species SAPRC99 chemical mechanism [Carter, 2000] with
an online photolysis solver, and the SCAPE II aerosol
solver (Simulating Composition of Atmospheric Particles
in Equilibrium) [Kim et al, 1993a, 1993b; Kim and
Seinfeld, 1995]. Meteorological inputs to the model came
from MMS [Grell et al.,1995], using the AVN data [Huang
et al., 1997] during forecasting and NCEP FNL (Final
Global Data Assimilation System) analyzed data during
postanalysis. For this study the model domain was the
continental United States, using a 60 km resolution, 62 cells
in longitude, and 97 cells in latitude. The model had
21 vertical layers, extending from the surface to 100 hPa.
The Grell cumulus parameterization [Grell et al., 1995] and
the MRF planetary boundary layer parameterization [Hong
and Pan, 1996] were used for the MM5 runs.
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Figure 2. Study framework for data analysis and sensitivity studies.

[5] During the operational portion of the experiment,
anthropogenic emissions were taken from the U.S. EPA
National Emissions Inventory for the base year of 1999
(NEI 1999) [U.S. Environmental Protection Agency (U.S.
EPA), 2006] while the 2001 update of the same (NEI 2001)
was used for the postanalysis stage. It should be noted that
NEI 2001 has lower emissions of CO, NO,, and SO, than
NEI 1999 (Table 1). Modifications were still needed since
the simulations with NEI 2001 systematically underesti-
mated light alkanes, and overpredicted aromatic species.
The large point source emissions (LPS) used were from the
updated inventory by Gregory Frost at NOAA Earth Sys-
tems Research Laboratory [Frost et al., 2006], which
represents emissions for 2004, the year of the campaign.
Upper troposphere lightning NO, emissions were added to
the model in postanalysis based on the National Lightning
Detection Network (NLDN), relating emissions to signal
strength and multiplicity of flashes. Further information
about the lightning emissions used is given by Tang et al.
[2007]. Biogenic emissions were estimated using BEIS 2
(Biogenic Emissions Inventory System) [Geron et al.,
1994], which generates time-variable isoprene and mono-
terpene emissions driven by meteorological variables from
MMS5 simulations. Forest fires that occurred during the
ICARTT period were largely outside our regional model
domain (in Alaska and northwestern Canada). Their epi-
sodic influence on lateral boundary conditions was incor-

porated during postanalysis using MOZART NCAR
boundary conditions [Pfister et al., 2005] with data assim-
ilated CO concentrations from Measurements of Pollution
in the Troposphere instrument on board the TERRA satellite
(MOPITT) to constrain the fire emissions influence for the
study period, while during the forecast MOZART GFDL
[Horowitz et al., 2003] boundary conditions were used,
which did not include episodic fire emissions, but climato-
logical emissions.

[6] The postanalysis work focused on improving model
performance by carefully comparing predictions with obser-
vations, and the use of the error information to identify
aspects of the model in need of improvement. Model
sensitivity studies were done for factors with significant
uncertainty including boundary conditions, anthropogenic

Table 1. Total Column Emissions in Model Domain, in Tg/year,
Including Point Source, Area, and Aviation Emissions®

Emissions, Tg/year

CO (as CO) NO, (as N) VOCs (as C)
NEI 1999 40.7 7.1 15.7
NEI 2001 25.0 5.2 135
NEI 2001-Frost LPS 26.8 4.8 13.8
NEI 2001-Frost LPS* 26.8 42 13.8

4CO emissions reported as Tg C/year, and NO, emissions as Tg N/year.
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Figure 3. Total column NO, emissions. (left) NEI 1999. (middle) NEI 2001-Frost LPS emissions.
(right) Decrease in NO, emissions from NEI 1999 to NEI 2001-Frost LPS. Scale is tonnes/km?/year.

emissions inventories, sea salt emissions, lightning NOy
emissions, and dry deposition rates. From these various runs
three were selected for detailed analysis in this paper. These
are (1) operational forecasting conditions (Forecast, NEI
1999); (2) the most updated emissions inventory (NEI2001-
Frost LPS); and (3) a modification of that emissions
inventory (NEI2001-Frost LPS*) that intended to improve
model performance by further decreasing the regional NO,
bias. Table 2 shows a summary of the model parameters for
the different scenarios compared in this study. Table 1
shows that the total column anthropogenic CO emissions
for the domain were reduced by ~40% from NEI 1999 to
NEI 2001, and that the NEI2001-Frost LPS estimate
increases CO with respect to NEI 2001. The surface NOy
emissions were reduced significantly from NEI 1999 to NEI
2001 (~30%). Figure 3 shows the domain column emis-
sions of NO, for NEI 1999 (Figure 3, left), NEI2001-Frost
LPS (Figure 3, middle), and the decrease of emission from
NEI 1999 to NEI 2001-Frost LPS (Figure 3, right).

[7] The results from runs with these different conditions
for the period 1 July to 18 August 2004, which includes
a model spin up period and which spans the times of the
DC-8 and WP-3 flights 3—20 for ICARTT, are discussed in
this paper. Merged data for both measurement platforms
were resampled from a 1 s to a 3 min resolution,
and compared to interpolated data from the 3 h, 60 km,
and 21-level variable vertical resolution model output.

[8] Kriging is a geospatial interpolation technique [Oliver
and Webster, 1990] that assumes that bias at a point without
observations can be related to points with observations, by
an expression which considers three components: an aver-

age term, a spatially correlated term, and a random error
term. The spatially correlated component is calculated using
a semivariogram, constructed by the semivariance among
observations as a function of distance. Kriging has been
previously used for interpolating surface measurements of
ozone, and particulate matter for health studies, and esti-
mation of exposure [Liao et al., 2006], to generate maps of
air pollution based on discrete measurements, such as the
AIRNOW network [U.S. EPA, 1999], and to provide a
geographical perspective to ozone analyses [Blond et al.,
2003]. Kriging produces a surface of predicted values and
uncertainty using a semivariogram (in this case exponen-
tial), which relates percent bias (bias/mean observed*100)
to distance among points. The analysis is limited to altitudes
less than 4000 m. This assumes that the vertical variability
in this range is smaller than the horizontal variability. The
continuous surface output of kriging provides geospatial
context to bias, and allows the comparison of related bias of
different precursors to ozone.

3. Data Analysis

[9] The surface ozone forecasted during ICARTT has
been compared with surface observations and showed a
significant high bias for daytime values (~15 ppbv)
[McKeen et al., 2006]. We anticipated such bias would
occur because of the fact that the experiment was conducted
in 2004, and that the actual emissions would differ from the
1999 values used in the forecast. The summer of 2004
presented significant fires in Alaska and Canada which were
misrepresented by climatological fires used in the forecast.

Table 2. Summary of Model Parameters for Scenarios Studied During Forecast and Postanalysis

Parameters
National Emissions Biogenic Boundary
Scenario Inventory Emissions Conditions Lightning NO, Dry Deposition Meteorology
Forecast 1999 BEIS 2 MOZART-GFDL, no dormant MMS5 and forecasted
climatological fires agricultural lands ~ AVN global model
NEI2001- 2001, Frost Large Point BEIS 2 MOZART NCAR, yes nondormant MMS5 and NCEP FNL
Frost LPS* Sources. VOCs adjusted by burned area biomass agricultural lands  reanalyses

increasing alkanes and
alkenes, and decreasing
aromatics.

burning emissions
[Pfister et al., 2005]

“Parameters for NEI2001-Frost LPS* are the same but reducing area NO, emissions by 60% for Alabama, Mississippi, Georgia, North Carolina, South

Carolina, Tennessee, West Virginia, Indiana, and Ohio.
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Table 3. Model Performance Statistics for Selected Species®
O3 CcO NO.
Frost Frost Frost Frost Frost Frost
Forecast LPS LPS* Obs Forecast LPS LPS* Obs Forecast LPS LPS* Obs

0-1 km
Mean modeled, ppbv 60.12 51.82 50.36 48.92 148 136 136 138 4.16 3.24 2.95 1.85
Mean bias, ppbv 11.21 2.90 1.45 - 9.75 —2.48 —1.84 - 2.70 1.40 1.11 -
S.D./mean modeled 0.39 0.34 0.33 0.33 0.36 0.29 0.27 0.28 0.77 0.66 0.67 0.92
R 0.71 0.70 0.72 - 0.61 0.68 0.68 - 0.59 0.59 0.56 —

1—4 km
Mean modeled, ppbv 58.97 54.68 53.32 57.34 131 127 125 119 2.76 2.26 2.09 0.93
Mean bias, ppbv 1.63 —2.66 —4.02 - 11.37 5.20 5.82 - 1.83 1.36 1.19 -
S.D./mean modeled 0.31 0.26 0.25 0.20 0.14 0.11 0.11 0.26 0.87 0.74 0.72 0.88
R 0.40 0.48 0.50 - 0.49 0.65 0.65 - 0.49 0.52 0.51 -

4—12 km
Mean modeled, ppbv 63.71 67.97 67.89 80.20 79 85 85 98 0.46 1.43 1.43 1.05
Mean bias, ppbv —16.49 —12.23 —12.31 - —19.37 —12.64 —12.60 - —0.59 0.43 0.42 -
S.D./mean modeled 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.20 1.25 1.37 1.37 0.60
R 0.56 0.47 0.47 — 0.06 0.33 0.33 — —0.13 0.10 0.10 —

“Modeled versus observed data, DC-8 platform. 0—12 km range. Frost LPS: NEI2001-FrostLPS. Frost LPS*: NEI2001-Frost LPS*. Modified area NO

emissions. SD, standard deviation.

Additionally, it was found in postanalysis that the dry
deposition velocities for agricultural crops were incorrectly
set to low growing season conditions. These factors all
contributed to forecast errors.

[10] Below we compare the forecasted values with air-
craft observations. We also compare the results from model
runs where the dry deposition velocity has been corrected,
and where the emissions and boundary conditions have
been updated.

3.1. Statistical Performance for All Flights

[11] The predictions of O3, CO and NO, for the various
simulation cases are compared with the DC-8 observations
in Figure 4 and Table 3. For these comparisons all data from
flights 3—20 are combined together and analyzed by alti-
tude. The predicted values are interpolated to the same
spatial location of the observations using trilinear interpo-
lation. In general the forecast values show a significant
positive bias in predicted ozone at altitudes below ~4 km,
and a high negative bias above this altitude. The mean bias
below 1 km is ~11 ppbv, similar to, but slightly lower than
the values found from the analysis of the surface AirMap
observations. Comparable patterns are found in the forecast
for CO and NO,, with high values at low altitudes and low
values at high altitudes. The postanalysis runs show signif-
icant improvements in the predictions at altitudes below
4 km (see for example the correlation coefficients for the 1—
4 km range). In the case of ozone the NEI2001-Frost LPS
case shows that the low altitude bias is reduced to less than
3 ppbv. The bias in the mid troposphere (4—12 km) is also
reduced (by ~25%). Similar improvements are found for
CO, where the bias above 4 km is reduced by updated
global boundary conditions (MOZART-NCAR) that im-
prove the correlation coefficient for CO because of their
better representation of the biomass burning emissions from
Alaska and northern Canada. Tang et al. [2007] evaluated
the impact of boundary conditions on model performance
using results from three different global models and found
that they dominate the performance of the regional model at

these altitudes. The remaining bias reflects the performance
skills of the global models used. For NO,, the bias in the
near surface regions is reduced, albeit at a smaller rate,
while the negative bias at higher altitudes decreases signif-
icantly. The improvements at the higher altitudes reflect
the importance of including lightning NO, emissions. The
comparison of the ratio of the standard deviation to the
mean value of the predictions and those for the observations
shows that the model exhibits a variability that is similar to
that of the observations.

[12] Similar results are found for the WP-3 comparisons
(Table 4). As shown by comparing Figures 1 and 2, the
flight operations of the WP-3 and DC-8 were different, with
the WP-3 focused largely on the northeast United States.
This along with the flight altitude differences lead to differ-
ences in the statistics in the observed distributions of the
DC-8 and WP-3 data. For example, the WP-3 low altitude
concentrations on average are higher. In the case of ozone
and CO the mean observed values from all flights were 56
and 158 ppbv for the WP-3 and 49 and 138 ppbv, respec-
tively, for the DC-8. The mean bias in the forecast for ozone
for the WP-3 was ~8 ppbv, compared to 11 ppbv for the
DC-8 comparison. Correlation coefficients for both aircraft
were very similar for the 0—1 km range (0.71 for DC-8, and
0.63 for WP-3). For the postanalysis simulation NEI2001-
Frost LPS the bias in predicted ozone at low altitudes was
reduced to 1.34 ppbv and the correlation was increased to
0.66. The mean biases for the lower altitude predicted for
CO and NO, were also reduced significantly (by ~90 and
70%, respectively). For the 1-4 km range the ozone
correlation improved (R increased from 0.57 to 0.65) and
the mean bias decreased from 4.91 to —0.58. CO predic-
tions also improved with R increasing from 0.52 to 0.66,
and bias decreasing from 28.37 to 8.79. Note that the CO
bias remains significant for the WP-3 flights, from which
we can infer that there is still a systematic over prediction of
CO for the area that was sampled by WP-3, i.e., the NE
United States. For the 4—6 km range emissions and bound-
ary condition improvements significantly enhanced ozone
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Table 4. Model Performance Statistics for Selected Species®
O3 CO NO,
Frost Frost Frost Frost Frost Frost
Forecast LPS LPS* Obs Forecast LPS LPS* Obs Forecast LPS LPS* Obs

0—1 km
Mean modeled, ppbv 64.52 57.60 55.93 56.27 202.81 163.56 164.49 158.60 7.77 5.03 4.79 3.91
Mean bias, ppbv 8.26 1.34 —0.34 - 44.24 4.96 5.89 - 3.87 1.12 0.88 -
S.D./mean modeled 0.38 0.31 0.30 0.35 0.31 0.24 0.24 0.24 0.65 0.63 0.65 0.72
R 0.63 0.66 0.69 - 0.43 0.42 0.42 - 0.28 0.29 0.29 -

1—4 km
Mean modeled, ppbv 65.07 62.05 59.59 60.16 164.04 143.34 144.46 135.66 5.00 3.58 3.34 2.38
Mean bias, ppbv 491 1.89 —0.58 - 28.37 7.67 8.79 - 2.62 1.20 0.96 -
S.D./mean modeled 0.34 0.27 0.26 0.23 0.38 0.28 0.28 0.34 0.86 0.71 0.73 0.88
R 0.57 0.63 0.65 - 0.52 0.66 0.66 - 0.64 0.64 0.65 -

4—6 km
Mean modeled, ppbv 50.61 59.74 58.97 66.80 92.08 101.37 101.77 106.66 0.82 1.34 1.29 1.13
Mean bias, ppbv —16.19 —7.06 —7.83 - —14.57 —5.28 —4.88 - —0.31 0.21 0.16 -
S.D./mean modeled 0.14 0.20 0.19 0.16 0.13 0.24 0.24 0.33 0.67 0.62 0.64 0.35
R 0.15 0.44 0.46 — 0.11 0.36 0.36 — 0.24 0.40 0.39 —

“Modeled versus observed data, WP-3 platform. 0—6 km range. Frost LPS:

deviation.

modeling performance, with R increasing from 0.15 to 0.46,
and bias decreasing from —16.19 to —7.83. Similarly CO
performance increased because of boundary conditions
incorporating biomass burning (R increases from 0.11 to
0.36, and the negative bias is improved from —14.57 to
—5.28). It is important to note that while the predicted
biases in NO,, were reduced significantly in the postanalysis
runs, they remain quite high (~1 ppbv overprediction when
averaged over all altitudes for the DC-8 and WP-3 obser-
vations). The NOy, distributions and their comparison with
various models used during ICARTT are discussed in detail
by Singh et al. [2006]. In Figure 5 we plot the observed and
predicted contribution of individual species to NO, for the
DC-8 observations and for the NEI2001-Frost LPS simu-
lations. This plot shows that the predicted contributions are
similar to those observed. Nitric acid is shown to compose
the largest NO,, fraction below ~4 km, above which PAN
contributes from 30 to 45% up to about 8 km; the relative
contribution of NO in comparison to NO, increases with

12000 4
10000 -
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6000

altitude (m)

4000 1

2000 §

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

observed fraction of NO,

NEI2001-FrostLPS. Frost LPS*: NEI2001-Frost LPS*. SD, standard

altitude in the upper troposphere (up to 45% of total
nitrogen) Within the boundary layer PAN and NO, each
contribute ~20% to NO,. The predicted distributions differ
in comparison with the observations in that the relative
contributions of HNO; are lower than those observed,
possibly being linked to overprediction of rainout or wash-
out processes upwind of the sampling. In addition the
predicted contribution of NO increases with altitude at a
slower rate than observed. This fact is probably related to
the treatment of the lightning NO, emissions. Lightning
NO, emissions at higher altitudes (4—6 km) improved the
modeling of reactive nitrogen species, decreasing the neg-
ative bias of NO, in the upper troposphere.

[13] Recurring positive bias of NO,, and its components
suggest that NO, emissions in the model are still higher than
the actual emission in the summer of 2004. While the
emissions used in this simulation have the large point source
sector updated to 2004, emissions from the other sectors are
based on 2001 values. The transportation sector is the major
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Figure 5. Comparison of mean contributions to NO, along the DC-8 flight tracks as a function of
altitude. (left) Observed values and (right) predicted for the NEI2001-Frost-LPS case. Values are plotted
as fraction of total NO,, defined as the sum of NO,, NO, HNO;, HNO,, and PAN.
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emission sector for NO, and transport emissions have shown
a downward trend [U.S. Department of Transportation,
2006]. Continuously monitored emissions of NOy from
large point sources have also decreased [Frost et al.,
2006]. So it is most likely that NO, emissions in 2004 are
actually lower than those in 2001 [Kim et al., 2006]. To
reflect this case we performed an additional simulation
(NEI2001—Frost LPS* case) where the NO, emissions were
reduced by an additional 12% with respect to total NO, on a
national level(but by 60% for area NO, emissions for
selected states, as is discussed in Table 1). The results of
this case are also presented in Tables 3 and 4, and Figure 4.
The effect of this reduction in NO, emissions is to further
reduce by ~20% the bias in NO,. Since ozone production in
the ICARTT region is largely NOy limited, this reduction in
NO, emissions also reduced the mean ozone levels by
~1 ppbv, and further reduced the bias in the lowest layers
by 50% (to 1.45 ppbv for the case of the DC-8), compared
to the NEI2001-Frost LPS case.

[14] The modeling of volatile organic compounds
(VOCs) has always been a challenge because of the uncer-
tainty of volatile organic compound emissions (VOC)
emissions inventories in the United States [Parrish, 2006].
At altitudes above 2 km, all model scenarios showed a
negative bias for the prediction for ethane, ethene, and
propane, largely due to the global model boundary con-
ditions with contributions from errors from imprecise treat-
ment of convective events. In general R values decrease
with altitude reflecting the fact that model performance
is highly dependent on boundary conditions at higher
altitudes.

[15] Figure 6 shows a quantile-quantile plot of observed
and modeled O5 for the DC-8 for measurements under 4000 m
altitude range. The forecast values show a systematic over-
prediction across the whole range, while the NEI2001-Frost
LPS* case shows great improvement for values over
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55 ppbv, which represented the majority of the points
sampled.Figure 7 shows that the frequency for which ozone
bias (modeled-observed bias divided by average observed
value*100) is between —20 to 20% has increased from 51 to
73% of the time with respect to the forecast, and model error
between —5 and 5% has increased from 14 to 23% with
respect to forecast. Postanalysis work therefore resulted in a
nearly unbiased distribution of ozone errors with a signif-
icant reduction in the standard deviation of ozone errors.

3.2. Case Studies

[16] The results above provide a mission wide perspec-
tive. NEI2001-Frost LPS* ozone bias is shown on a flight
by flight basis in Figure 8. Generally the bias in the lowest
layers is less than 5 ppbv, while the bias in the 8—12 km
range is large, and particularly high in flights 3, 11, 15, 16,
and 17. This is a reflection of the boundary conditions from
the global models. Tang et al. [2007] shows that boundary
conditions varied greatly among global models, and
depending on the global models used the ozone bias in
the upper troposphere varied from large negative to large
positive values, reflecting differences in the global models
in placing stratospheric intrusion of ozone. To show how the
model predictions changed from the forecast to postanalysis
details for specific flights were also analyzed. Figure 9
shows how model performance improved during DC-8 flights
12 and 14 (25 and 31 July 2004). The plots show that at low
altitudes (0—1 km) the model bias is reduced from 8 to 2 ppb
for flight 14, and from 22 to 12 ppbv for flight 12, when
using improved emissions. For the upper troposphere the
model showed a large biases (positive for flight 14, and
negative for flight 12), which were decreased significantly
by using updated boundary conditions from NCAR
MOZART. This improvement is reflected in an increase in
the correlation coefficients from 0.65 to 0.84 for flight 14,
and from 0.01 to 0.78 for flight 12.

— Forecast

NEI2001- Frost

£ LPS
g — NEI2001-
% FrostLPS*

-100 -80 -60 -40 -20 O 20 40 60 &80 100

% O3 bias

Figure 7. Probability distribution of % ozone bias for
forecast (NEI 1999) and postanalysis runs (NEI2001-
FrostLPS and NEI2001-FrostLPS*) for DC-8 measurements
under 4000 m.
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Figure 8. Mean ozone bias for DC-8 flights 3—20, separated by altitude range, for the NEI2001-
FrostLPS* case. Error bars represent standard deviation.

4. Analysis of Model Error

[17] The relationship between model errors is a key step
in understanding model behavior and identifying model
deficiencies. This information is also becoming increasingly
important as estimates of error covariance are an important
aspect of chemical data assimilation [Chai et al., 2007]. The

ICARTT experiment produced observations for a large
spectrum of species that are involved in the photochemical
oxidant cycle. Thus it is possible to use these data to explore
the relationships between the calculated and observed
species concentrations with respect to ozone. In this section
we analyze two relationships: the correlation of observed

R Bias (0-1km) Bias (8-12km)

R _ Bias(0-1km)  Bias (8-12km) Forecast 0.01 22.84 30.51
Cocan, 0810 o
12000 — — 160 12000 — — 120
i Legend i i i
Altitude
+  Observed 1120
8000 — Forecast f 8000 — —180
— Post Analysis 1 ~ =
8 P Post Analys [ _§_ s
o
S . 802 . 1 &
2 ® ®
< o o
4000 —| 4000 — —40
P 40
| § i |
0 ‘ T 0 O T ‘ T ‘ T ‘ T ‘ T 0
10 12 14 16 18 20 8 10 12 14 16 18

local time (h)

local time (h)

Figure 9. (left) Time series of observed and modeled ozone along DC-8 flight 14 flight track (31 July

2004). (right) Time series of observed and modeled

ozone along DC-8 flight 12 track (25 July 2004).

Absence of modeled data denotes that flight went beyond model boundaries. Forecast run is NEI 1999,

MOZART boundary conditions. Postanalysis is NEI

2001-Frost LPS*, RAQMS boundary conditions.
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Table 5. Correlation Coefficients of Observed Parameters Versus Observed Ozone and Bias (Modeled-Observed) of Parameters to Ozone

Bias, at Different Altitude Ranges for DC-8 Platform®

Observation Correlation Coefficients

Bias Correlation Coefficients.

0—1 km 1-4 km 4—-8 km 8—12 km 0—1 km 1-4 km 4-8 km 8—12 km
Acetone 0.68 0.21 0.11 —0.12 0.42 0.15 0.10 —0.14
ARO2 —0.02 0.11 0.31 - 0.04 0.04 0.89 (n = 6) —0.95
ARO1 0.47 0.40 0.01 0.07 0.09 0.07 0.13 0.02
Acetaldehyde 0.38 —0.07 0.04 0.10 0.24 0.20 —0.07 0.12
CcO 0.70 0.44 0.08 —-0.24 0.51 0.44 0.19 —0.32
Ethene 0.24 0.06 —0.04 —0.07 0.04 —0.05 0.02 —0.05
Ethyne 0.75 0.48 0.14 0.00 0.18 0.25 0.26 —0.07
H,0, 0.51 0.24 —-0.29 —0.28 0.28 —0.01 —0.27 —0.29
Formaldehyde 0.53 0.07 —0.09 —0.12 0.20 0.11 0.18 —0.04
HNO; 0.86 0.50 0.19 0.67 0.47 0.45 0.44 0.36
HO, 0.48 0.23 —0.14 —0.28 0.15 0.09 0.14 —0.10
Isoprene —0.03 —0.03 —0.19 —0.48 —0.38 —0.34
MEK 0.65 0.17 0.08 —0.14 0.48 0.44 0.11 —0.03
NO —0.03 —0.06 0.19 —0.04 -0.17 0.07 0.10 0.04
NO, 0.15 0.07 0.48 0.14 —0.07 0.20 0.20 0.10
NO, 0.63 0.30 0.48 0.27 0.34 0.55 0.39 0.10
NO, 0.77 0.37 0.47 0.42 0.45 0.57 0.50 0.28
OH 0.55 0.24 0.23 0.12 0.24 0.23 —0.09 —0.01
PAN 0.64 0.46 0.39 0.03 0.60 0.64 0.43 —0.05
Propane 0.40 0.16 0.06 —0.10 0.14 0.14 0.01 —0.10
Propene —0.06 0.05 0.06 —0.25 —0.12 0.13
RH —0.21 —0.38 —0.28 —0.35 —0.14 —0.05 —0.03 —0.08
SO, 0.28 0.12 0.09 0.04 0.07 0.35 0.17 —0.01
Temperature 0.33 —0.09 —0.35 —0.19 0.27 0.15 —0.08 —0.41
Wind speed —0.16 —0.06 0.13 0.14 0.04 0.10 0.09 0.06

“Bias calculated with respect to NEI2001-FrostLPS. Ranges 0—1 km, 1-4 km, 4—8 km, and 8—12 km.

ozone concentrations with respect to other measured param-
eters, and the correlation of ozone bias (or error), with
respect to other species. Simultaneous analysis of these
relationships provides valuable insight on ozone chemistry,
and sources of model error.

4.1. Correlation Between Model Biases

[18] Comprehensive field experiments such as ICARTT
provide an opportunity to examine the complex relation-
ships between the processes that govern ozone distributions
in the troposphere. Toward these ends we examined the
correlations between the observed ozone, and ozone bias to
various species using the DC-8 data and the results are
presented in Table 5. Shown are results for the postanalysis
simulation NEI2001-Frost LPS.

[19] We first examine the relationships between ozone
and other parameters using all the DC-8 flight data binned
by altitude. Table 5 shows that the observed ozone concen-
trations at low altitudes (0—1 km) are most strongly corre-
lated to HNO;5 (R = 0.86), ethyne (R =0.75), CO (R =0.70),
acetone (R = 0.68), MEK (R = 0.65), NO, (R = 0.77), PAN
(R =10.64) and NOy (R = 0.63). These species represent the
general features important in photochemical production, i.e.,
precursor emissions of CO, NO, and nonmethane hydro-
carbons. The correlations are small for short-lived species
such as NO, propene and isoprene (—0.03, —0.06 and
—0.03, respectively), reflecting that the DC8 observations
when averaged over 3 min map out large spatial scales (i.e.,
60 km) and thus represent air masses that have been
photochemically aged for many hours. These relationships
change with altitude, and the correlations decrease in value.
For the 4—8 km range, where only the nitrogenous species

concentrations show the highest correlation to ozone, with
NO, (R =0.48), NOy (R = 0.48), NO, (R = 0.47), and PAN
(R = 0.39). At higher altitudes (8—12 km) correlations
HNO; (R = 0.67), NO, (R = 0.42), NOy(R = 0.27) and
with RH (R = —0.35) and CO (R = —0.24) are the highest.

[20] The decrease in correlations with altitude in the
aggregate data reflects many factors, including the fact that
the ozone relationships are driven by many processes with
distinct correlations. For example stratospheric exchange
and convection events result in very different and strong
correlations, which show up when the data is first sorted by
process, but are lost when all data representing all processes
are analyzed together. The high correlations near the surface
represent the dominance of the sources and photochemical
production processes.

[21] The correlations of the ozone bias with respect to the
biases in other species are also shown in Table 5. In general
the model biases show similar relationships between species
as discussed above for the ozone observations. For altitudes
<1 km PAN, CO, MEK, and HNO; are among the most
highly correlated biases with respect to the ozone bias (0.6,
0.51, 0.48, and 0.47, respectively). The correlation relation-
ships for the biases tend to extend up to ~4 km, above
which the values tend to decrease. In the upper troposphere
the correlation structure is very different than that at the
surface, reflecting the different processes and the strong
contribution of the boundary conditions to the biases.

[22] The simple correlation analysis discussed above
shows the complex relationships between ozone and the
ozone biases, with those relationships in the lower tropo-
sphere reflecting the emissions and the photochemical
production processes. To better understand these relations,
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Figure 10. Factor analyses for DC-8, points in 0—1 km range. (top) Observations. (middle) Model.
(bottom) Bias of model with respect to observations. Factor criteria are Eigen value one, varimax rotation.

factor analysis was performed on the observational data, on
the model predicted values, and on the biases. Factor
Analysis (FA) is essentially a variable reduction of data
sets consisting of large number of intercorrelated variables
into a small number of factors, which account for most of
the variance in the original variables [Kulkarni, 2004]. This
technique is frequently used in air quality studies to unravel
the hidden source information from a rich ambient data set.
It is particularly very useful for source apportionment
studies when there is no prior information available about
the nature of the major aerosol sources affecting a particular
receptor station [Seinfeld and Pandis, 1998]. Factor Anal-
ysis is extremely useful in identifying the relationships
among variables that are driven by common processes such
as sources, transport, and chemistry. In addition, the Factor
Analysis approach is unaffected by errors in modeled
emissions, chemistry, or transport [Millet et al., 2006]. In
this section, the results obtained by the application of the
Factor Analysis to the observed values, the corresponding
model predictions and the model errors for the DC-8 at
altitudes below 1 km are presented. The main objective of
this analysis is to identify the underlying relationships
between ozone and its other precursor species. All the
analyses presented in this section were performed using
SAS 9.0 software [SAS Institute, 2004]. All rows with
missing values were deleted prior to performing the analy-
sis, so all analysis uses identical sampling. The factors were
extracted using Eigen value one criterion and the extracted
factors were subject to the varimax rotation.

[23] Figure 10 depicts the output obtained from FA
analysis. We only show the factor that accounts for the
highest variance among the retained factors in each analysis
here. Figure 10 (top) in gray shows the factor for the
observed species. This factor contains a spectrum of species
related to ozone and its precursors, and clustering together
those photochemical factors identified in Table 5. Figure 10
(middle) in red shows the output from the same analysis
conducted using the predicted values (NEI2001-Frost
LPS*). In general the factors identified by the model
predictions show many similarities to those based on
observations suggesting that the modeled processes are
capturing many of the ozone relationships in the real
atmosphere. Figure 10 (bottom) shows the output of the
factor analysis performed for the model errors. The cluster-
ing of errors shows a structure similar to that for the species
dependencies. Highest factor loadings appear for primary
species such as CO, ethyne and AROI1, as well as for
secondary species (the largest factor loading is for PAN).
These underlying error structures provide guidance into
further model improvements, such as continued improve-
ments in emissions, and improvements in the chemical and
physical processes controlling key species such as PAN and
HCHO. Furthermore this error structure may also be useful
in better definition in the error covariance estimates needed
by modern data assimilation techniques as discussed by
Chai et al. [2007].
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4.2. Bias in a Regional Context

[24] Geographical context is given to the point bias
estimations (modeled-observed) by interpolating them
through kriging, generating a continuous surface. Data
was restricted to the 0—4 km range, for all DC-8 flights.
The previous section suggested which variables need to be
improved to lower ozone bias. The interpolated bias surface
gives guidance toward where model bias needs to be
improved, and qualitatively how changes in modeled inputs
affect the bias. The surface of ozone bias is shown in
Figure 11. For the forecast (Figure 11, left) we observe that
during the forecast there was a positive bias in the central
and eastern United States with bias in the range of 10—50%.
The biases in CO, NO,, NO,, HNO;, and PAN, which
showed strong correlation with ozone bias as discussed
previously, were also analyzed. Wherever ozone presented
a positive bias in the forecast CO (Figure 11, left), NOy,
NO,, and HNO; (Figure 12, left) also presented positive
biases. This is particularly clear for NOy (Figure 12, middle
left) where the bias in some regions of Ohio, North Carolina
and Virginia are as large as 300—400%. When the emission
inventories were modified, updating to NEI 2001 and the
large point sources (Frost LPS), the ozone bias decreased to
~5-10% across the domain (Figure 11, top middle). The
bias in CO was reduced through the continental United
States, along with the bias of NO,. However, a positive
systematic bias persisted for ozone and NO,, and its
components, in portions of the domain.

[25] The effect of changes in the dry deposition velocities
is also apparent for the bias plots for ozone and HNO;. In
the regions dominated by agricultural crops (i.e., the central
United States) the biases of ozone and HNOj are signifi-
cantly reduced. For those species with low dry deposition
rates the effect on bias reductions are small (CO and NO,).
For example, North and South Dakota, regions with negli-
gible changes in NO, emissions between NEI 1999 and
2001 where ozone bias decreased from 20—-50% to —5 to
5%.

[26] As a sensitivity study aimed to further reduce the
bias, an additional simulation was conducted with a 60%
decrease of NO, area emissions (12% reduction of total
NO, emissions) for Alabama, Mississippi, Georgia, North
Carolina, South Carolina, Tennessee, West Virginia, Indiana,
and Ohio, chosen since these states presented the highest
bias in NO,, NOy, and HNO; according to the kriging
results. The results of this run showed enhancement of
correlation factors for nitrogen species (Table 3 and 4),
particularly for HNOs;, and NO,, while decreasing their
positive bias. As shown in Figure 11 (top right), the ozone
bias decreased to a range of —10 to 10% for most of the
continent, with large portions showing bias in the —5 to 5%
range. The offshore ozone positive bias persists, but to
lesser geographical extent, and lower magnitude than the
NEI 2001 scenario, and the forecast scenario. NO, for this
same scenario decreases its regional bias to less than 100%
over large portions of the domain (Figure 12, middle).
Figure 12 (bottom right) shows that HNO; bias also
decreases significantly with the updated and modified
emissions, with some areas presenting a negative bias.
Figure 12 (top right) shows that NO, bias decreased in
South Carolina, North Carolina, and Virginia from 200—
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400% to —30 to 50%, in accordance to locations where the
ozone bias was decreased.

[27] Special notice must be taken of Figure 11 (bottom),
which shows that forecast CO, using NEI 1999 presented
positive biases of 30—50% for the western portion of the
United States, which decreased to 20—30% using the NEI
2001. Negative CO bias over Michigan decreased from —30
to —20% to —20 to —10% as a result of improved boundary
conditions. The offshore Atlantic positive CO bias de-
creased from 30-50% to the 10-30% range and from
10-20% to —10 to 10% for the southeastern United States.
These changes are due largely to changes in emissions as
this region is largely under outflow conditions for the period
of study.

5. Discussion
5.1. Sensitivity Analysis

[28] As illustrated in Figure 2 a variety of sensitivity
studies were performed to investigate the sensitivity of the
model to other important parameters. The most significant
parameters studied in terms of reduction of model bias, dry
deposition, emissions, and boundary conditions, have been
discussed previously. In terms of near surface ozone the
largest impacts are due to dry deposition velocities and
emissions, with each contributing equally to the bias reduc-
tion. In the mid to upper troposphere, the boundary con-
ditions dominated the improvements.

[290] Simulations were also performed for the eastern
United States using a 12 km horizontal resolution. The
biggest impact was found near the surface for the 12 km
resolution. For the 0—1 km range the mean for the WP-3
increased by 3 ppb with a slight increase in correlation to
(R=0.71). For CO the 12 km resolution increased the mean
value by 5 ppb and also increased the correlation coeffi-
cient. Biogenic emissions represent an additional source of
uncertainty. We repeated a simulation using the BIES3
biogenic emissions algorithm, which led to higher biogenic
emissions. Under these conditions the near surface ozone
increased by 1 ppbv throughout the eastern United States
and CO by 10 ppbv.

5.2. Ozone Production Efficiency

[30] Up to now we have shown that the ozone bias was
strongly correlated to NO, and NO,, bias. We have also
discussed that there is geographical concordance of ozone
bias with NO, bias. Previous work has related ozone and
NO, [Kleinman, 2005; Trainer et al., 1993], in a relation-
ship for ozone production efficiency (OPE), which for the
purposes of this analysis is the slope of the plot of odd
oxygen (NO, + O3) to NO,. In Figure 13 the ozone
production efficiency for the observed and predicted values
for data points less than 4000 m is plotted. For the DC-8 data
the observed OPE is 7.8, while the forecast, NEI2001-Frost
LPS, and NEI2001-Frost LPS* cases have OPEs of 6.7, and
7.8, respectively. The observed ozone production efficiency
for the DC-8 data suggests efficient formation of ozone,
typical of NO, limited conditions. The ozone production
efficiency in the area sampled by WP-3 is lower than the
DC-8 (Observed OPE = 3.49, Modeled OPE = 5.28), which
reflects the fact that the area sampled was closer to emission
source regions in the northeast.
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Figure 13. Observed and modeled ozone production efficiency (OPE). (left) DC-8. (right) WP-3 for
data points with altitude <4000 m, all flights. Red indicates forecast, NEI 1999, and blue indicates NEI

2001-Frost LPS*.

5.3. Model Sensitivity to Emissions

[31] The fact that the modeled and observed production
efficiencies are similar suggests that the underlying ozone
relationships of the model are reasonably well represented,
and therefore that the results of sensitivity studies may be
meaningful. Further insights into ozone production can be
seen by comparing the change in ozone to changes in
emissions. The mean predicted near surface ozone (0—
1 km) values for the NEI 2001 Frost LPS* is shown in
Figure 14, in which higher values are found in California,
Arizona, and the Atlantic states. The sensitivity of O3 to
emissions of precursors is also shown in Figure 15. These
simulations were done for the period of 21 July to 18 August
2004, in the absence of anthropogenic VOCs, CO, and
reduced NO,. The contribution of each precursor is calcu-
lated as the difference between the average daytime surface
ozone concentration in the presence of a precursors minus
the concentration in the absence of the precursor, normal-
ized by the total yearly emissions of the precursor (ppb
ozone formed/(Tg precursor/year)). Ozone formation is
most sensitive to changes in NO, (as is also shown in
Figure 14), especially in the Midwest, where ozone per Tg
of NO,/year increases by 10—-20 ppbv (note that NO
sensitivity was calculated on the basis of 30% reduction
of total NO,). For reference, 1 Tg of NO,/year is roughly
equivalent to the emissions of 28 coal fired power plants of
2500 MW (36,000 tonnes NO,/year each) [Miller and Van
Atten, 2004]. In the northeast United States, ozone is
equally sensitive to NOy and anthropogenic VOCs, while
in large parts of the western United States, ozone is more
sensitive to VOCs. CO effects are similar to VOCs, but
smaller on a per Tg/year basis. Since CO emissions are
larger than VOCs, total CO effects on ozone can be in the
same order of magnitude. Figure 15 shows that VOCs and
CO contribute to a large portion of ozone formation in
portions of the northeast United States.

[32] As pointed out above, NO, plays an important role in
ozone production. Furthermore an appreciable fraction of
NO, is composed of PAN (representing ~20% near the
surface and ~50% at 6-—8 km altitudes, Figure 5), and
ozone levels and errors were shown to be significantly

correlated with those for PAN. PAN plays important roles
as both a key photochemical product and as a reservoir for
NOy. To assess the role of PAN on ozone production we
conducted a simulation where PAN levels within the
regional domain (but not in the boundary conditions) were
continuously set to zero. In this way the formation of PAN
was allowed, but the thermal decomposition source of NO,
was blocked, by setting PAN concentrations consistently to
zero. The impact of PAN on predicted mean surface ozone
for the month of July is shown in Figure 16 (right). This
indirect ozone production pathway of PAN via production
of NOy is estimated be over 20% throughout the continental
United States with large regions with values between 30 and
50%. This impact extends to all altitudes with values
exceeding 8% throughout the domain at an altitude of
5.6 km. Differences become small above this height as the
PAN levels are dominated by the boundary conditions
values, which were not changed, and the low rates of
PAN thermal decomposition due to cool temperatures.
The results point out the importance of accurately predicting
PAN levels, which requires the close coupling between the
regional and global models, as PAN sources and sinks
reflect process occurring throughout the vertical extent of
the atmosphere and over large geographic scales. Figure 16
(left) shows results for a sensitivity analysis where the
formation of PAN itself is blocked. As PAN is a reservoir
for NOy under these conditions, with its formation pathway
is blocked, a greater fraction of NOy is oxidized into nitric
acid, with the net effect of more ozone being formed. Mean
surface ozone concentration increases up to ~7 ppb.

6. Conclusion

[33] The comprehensive ICARTT aircraft observations
were used to evaluate and improve ozone prediction for
the STEM model by simultaneously analyzing model
performance with conventional statistics, mean vertical
profiles, and geospatial interpolation to provide a compre-
hensive three dimensional context on model performance,
laying the groundwork for subsequent model improvement.

[34] The STEM model forecasts of ozone were found to
have a significant positive high (overprediction) bias near
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Figure 14. (top left) Modeled near surface ozone (0—1 km average) for NEI-2001-FrostLPS* case.
Modeled net ozone formation (ppbv/(Tg of precursor/year)): (top right) NO, and (bottom left)
anthropogenic VOCs emissions. (bottom right) Anthropogenic CO. Study period is 21 July to 18 August
2004.

0 2 4 6 81012 14 16 18 20 0 2 4 6 81012 14 16 18 20

Figure 15. Average surface ozone contribution (ppbv) due to (left) anthropogenic VOCs and (right)
anthropogenic CO, calculated as the difference between average 0—1 km ozone for NEI 2001-FrostLPS*,
and the same in scenario in the absence of VOCs and CO, respectively. Study period is 21 July to
18 August 2004.
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Figure 16. Calculated impact of the thermal decomposition of PAN on ozone. (left) Average difference
between surface ozone with the formation of PAN and with the formation of PAN blocked. (right)
Average difference between surface ozone concentration with unconstrained PAN and with PAN
concentrations set to zero. Study period is 21 to 28 July 2004.

the surface and a large negative bias in the upper tropo-
sphere. These biases were due in part to model errors, which
included the use of outdated emissions in the forecasts (i.c.,
the use of NEI 1999 emissions), out of season dry deposi-
tion velocities for agricultural crops, and the use of global
model boundary conditions (BCs) that were based on
climatological biomass burning emissions. Postanalysis
simulations were conducted using corrected dry deposition
velocities, NEI 2001 inventory with point source emissions
updated to 2004, and BCs from global models using
biomass burning emissions reflective of 2004 fire activity.
These changes resulted in a decrease in low altitude (0— 1 km)
mean ozone bias from 11.21 to 1.45 ppbv in comparison to
DC-8 observations and from 8.26 to —0.34 ppbv for the
WP-3 data. The upper troposphere ozone negative bias
persisted, but was reduced in magnitude. In addition, the
postanalysis simulations resulted in a nearly unbiased dis-
tribution of ozone errors with a significant reduction in the
standard deviation of ozone errors.

[35] A series of analyses were performed to study the
structure of the ozone errors. These included the correlation
of ozone errors with errors in other species. In general the
model ozone errors show high correlation for altitudes
<1 km with the errors in PAN, CO, MEK, and HNO;.
These correlation relationships for the biases tended to
extend up to ~4 km, above which the values decreased.
To better understand the relationships among these errors,
factor analysis was applied. The clustering of errors shows a
structure similar to that for the species dependencies, and
included contributions from meteorological features of
temperature and RH, precursor species such as CO, ethyne
and aromatics, as well as photochemical products such as
HNO;, PAN, H,0, and HCHO.

[36] The spatial distribution of the model errors were
examined using Kriging. The geospatial distribution of
forecast errors identified distinct features, which when
compared to the errors in the postanalysis simulations,

helped document model improvements. For example,
changes in the dry deposition to crops was shown to reduce
substantially the high bias in the forecasts in the Midwest,
while the updated emissions accounted for the decrease in
bias in the eastern United States. In addition, improvements
in boundary conditions from global models, which
accounted for biomass burning emissions, improved model
performance for CO in the upper troposphere, in compari-
son to the forecast stage.

[37] Nitrogen species, namely NO,, NO,, and HNO;
showed positive bias during forecast stage, which de-
creased during postanalysis. Reductions in these biases
due largely to emission changes resulted in reduction of
ozone bias, especially in the 0—4 km range. However, a
persistent high NO,, bias suggests that the NEI 2001 NO,
emissions are still overestimated. Kriging was shown to
provide a geospatial analysis of these biases, and to
provide information that can help guide further regional
modification of emissions.

[38] Predicted ozone production efficiency (OPE) was
studied and shown to be similar to the observed OPE
(calculated values of OPE of 7.83 in comparison to observed
OPE of 7.79 for the DC-8). The OPE for the WP-3 (observed
3.49, modeled 5.28) was lower than for the DC-8, suggesting
that the area sampled by the WP-3 was closer to the source
regions of NO,.

[39] Simulations with perturbed emissions found ozone
formation to be most sensitive to changes in NO,, especially
in the Midwest, where ozone per Tg of NO,/year increases
by 10-20 ppbv. However, in the northeast United States,
ozone was found to be equally sensitive to NO, and
anthropogenic VOCs, while in large parts of the western
United States, ozone was more sensitive to VOCs. CO
effects were found to be similar to those for VOCs, but
smaller on a per Tg/year basis. Since CO emissions are
larger than VOCs, total CO effects on ozone can be in the
same order of magnitude.
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[40] The results presented here help demonstrate how
more detailed analysis of errors can improve model perfor-
mance. These results also point out that the underlying error
structure is complicated, but that the underlying error
structure can provide guidance into further model improve-
ments, such as continued improvements in emissions, and
improvements in the chemical and physical processes con-
trolling key species such as PAN and HCHO. Furthermore
this error structure may also be useful in better definition in
the error covariance estimates needed by modern data
assimilation techniques.

[41] Acknowledgments. This work was supported by grants from
NASA GTE and NOAA. We acknowledge the entire ICARTT science team
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